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2002.—Autosomal dominant polycystic kidney disease (AD-
PKD) is the result of mutations in one allele of the PKD1 or
PKD2 genes, followed by “second hit” somatic mutations of
the other allele in renal tubule cells. Continued proliferation
of clonal cells originating from different nephron segments
leads to cyst formation. In vitro studies of the mechanisms of
cyst formation have been hampered by the scarcity of ne-
phrectomy specimens and the limited life span of cyst-de-
rived cells in primary culture. We describe the development
of a series of immortalized epithelial cell lines from over 30
individual renal cysts obtained from 11 patients with AD-
PKD. The cells were immortalized with either wild-type (WT)
or temperature-sensitive (TS) recombinant adeno-simian vi-
rus (SV)40 viruses. SV40 DNA integration into the cell ge-
nome was verified by PCR analysis. The cells have been
passaged over 50 times with no apparent phenotypic change.
By light microscopy, the cells appear pleomorphic but mostly
polygonal and resemble the primary cultures. Transmission
electron microscopy shows polarized epithelia with tight
junctions. The SV40 large T antigen was detected by immu-
nocytochemistry and by Western blot analysis at 37°C in the
WT cell lines and at 33°C in the TS cell lines. It disappeared
in TS cells 72 h following transfer to 39°C. The majority (29)
of the cell lines show binding of Dolichos biflorus lectin,
suggesting distal tubule origin. Three cell lines show binding
of Lotus tetragonolobus lectin or express aminopeptidase N,
suggesting proximal tubule origin. Three cell lines were de-
rived from a mixture of cysts and express features of both
tubules. The PKD1 and PKD2 mRNA and protein were
detected in all cells by RT-PCR and by immunocytochemis-
try. The majority of the cells tested also express the epider-
mal growth factor receptor, cystic fibrosis transmembrane
conductance regulator, epithelial sodium channel, and renin.
These new series of cyst-derived cell lines represent useful
and readily available in vitro models for studying the cellular
and molecular biology of ADPKD.

polycystic kidney disease; SV40

AUTOSOMAL DOMINANT POLYCYSTIC kidney disease (AD-
PKD) is a common genetic disorder, which accounts for

8–10% of the end-stage renal disease population in the
United States (7). ADPKD is caused by mutations in at
least two separate genes. The PKD1 and PKD2 genes
have been mapped to chromosomes 16p13.3 and 4q21–
23, respectively (19, 35, 41). Mutations in PKD1 ac-
count for �85% of the cases (41). Additional genes may
be involved but have not been mapped. The gene prod-
ucts of PKD1 and PKD2, called polycystin-1 and poly-
cystin-2, are large membrane-associated proteins
whose function is not well known (19, 41). On the basis
of their structure, they are likely involved in cell-cell
and cell-matrix interactions (2, 41).

Polycystin-1 is expressed in fetal and neonatal kid-
neys, with much lower levels in the adult kidney (40).
The highest expression is found in collecting ducts and
distal nephrons (13). Polycystin-1 is also expressed in
many cysts in adult ADPKD kidneys (13, 40). Polycys-
tin-2 expression parallels that of polycystin-1, with
primarily an intracellular localization (31). The high-
level expression of polycystin-1 and -2 in cysts of adult
ADPKD patients is difficult to reconcile with a loss-of-
function mechanism. Expression of immunoreactive
but nonfunctional protein is a likely possibility (31).

Cysts are the result of overgrowth of clonal tubule
epithelial cells, reaching several centimeters in diam-
eter (16). In ADPKD, cysts may originate from any
nephron segment, including both the proximal and
distal tubules/collecting ducts (3). They are composed
of an epithelial monolayer attached to an abnormal
and thickened basement membrane (43). Larger cysts
develop their own capillary network, which provides
nutrients to the cyst surface (4). The mechanism of cyst
formation is not well understood but involves a combi-
nation of factors including transepithelial fluid secre-
tion, tubular epithelial cell proliferation, and increased
sensitivity to cAMP and to growth factors such as
epidermal growth factor (EGF) (6). Recent studies
showed that polycystin-2 can function as a nonspecific
cation channel permeable to sodium and calcium (8, 15,
18). Mutations in PKD2 (e.g., R742X) that result in a
truncated protein lacking the 181 COOH-terminal
amino acids result in partial translocation of polycys-
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tin-2 to the plasma membrane, altered Ca2� perme-
ability, and decreased sensitivity of the channel to
intracellular Ca2� concentrations (15, 39). Binding be-
tween polycystin-1 and polycystin-2 is also necessary
for channel function (18).

Studies of the mechanisms of cyst formation and of
genotype-phenotype correlations have been hampered
by difficulties in obtaining ADPKD kidney specimens
and by the lack of available and useful cyst-derived cell
lines. Several investigators have used cyst-derived
cells in primary culture (28, 29, 43). These cells main-
tain many features of the cysts of origin and have been
used to describe the properties of cyst epithelium. Un-
fortunately, primary cultures of cyst-derived cells can-
not be maintained beyond three passages, necessitat-
ing frequent harvest of cells from nephrectomy speci-
mens. The short life span of cyst-derived cells in
primary culture precludes repeated studies on the
same cell isolate. Furthermore, most investigators
have isolated cells from several cysts pooled and di-
gested together (28, 43). In prior studies, the tubule
origin of cyst-derived cells has not usually been iden-
tified, making some of the results difficult to interpret.
For example, Wilson et al. (43) reported reduced ade-
nylate cyclase activity in response to parathyroid hor-
mone (PTH) and AVP in cultured cyst-derived cells
compared with cultured proximal and distal tubule
cells, regardless of the location of the cysts within the
renal cortex. They correctly noted that superficial cysts
are not necessarily derived from proximal tubules and
vice versa (43). To ensure that cysts of both proximal
and distal tubule origin are obtained, one must dissect
multiple individual cysts, isolate cells for culture, and
then identify the desired cells with specific tubule
markers.

We describe the isolation and subsequent immortal-
ization of over 30 epithelial cells from individual cysts
of 11 ADPKD kidneys. Twenty-one of the 23 cell iso-
lates (29 cell lines) obtained from individual cysts have
characteristic features of distal tubules with two cell
isolates (9-7 and 9-12) showing features of proximal
tubules. Four cell isolates [wild-type (WT) 1-2, WT 3-2,
temperature sensitive (TS) 7-0, and WT/TS 17-0] were
derived from a mixture of several cysts and were not
subcloned. They are presumably derived from cysts of
both proximal and distal tubule origin. However, based
on lectin-binding properties and positive renin immu-
nostaining (a feature of distal cysts), these cell mix-
tures are mainly of distal tubule origin. Some of the
cells have been maintained in culture for over 50 pas-
sages without any phenotypic changes. The major
characteristics of the cell lines are summarized in
Table 1.

METHODS

Culture of cyst-derived cells. We initially isolated cells from
cysts obtained from three polycystic kidneys, using a colla-
genase digestion method, previously described by other in-
vestigators (29, 41, 43). The yield from this method was low,
requiring several cysts to be pooled and digested together.
Therefore, this method proved unsuitable for isolation of cells

from single cysts. The cell isolates numbered 1-2, 3-2, and 7-0
were obtained by this method (Table 1). For subsequent
kidneys, we used a trypsin/EDTA digestion method similar to
that described by McAteer et al. (29) to release cells from cyst
walls (Fig. 1). A total of 11 polycystic kidneys was used for
this study. Because there was no difference in the character-
istics of the cells cultured by these two methods, the data are
combined. Briefly, cyst tops were excised, washed extensively
in PBS, and incubated with 1� trypsin/EDTA at 37°C for
15–20 min. Each cyst was processed separately. The tubes
containing the cyst fragments were vortexed vigorously every
5 min. Thereafter, ice-cold HBSS containing 10% FBS was
added to inactivate trypsin. The cells were further released
from the fibrous cyst wall by trituration, washed twice with
HBSS, then centrifuged and resuspended in fresh culture
medium, and seeded on Pimaria culture plates. To allow
attachment, the cells were grown for 24–48 h in DMEM
containing 10% FBS. Thereafter, the medium was changed to
a serum-free or to a low-serum (2% FBS) medium, consisting
of a 1:1 mixture of DMEM:Ham’s F-12, supplemented with 5
�g/ml insulin, 5 �g/ml transferrin, 5 ng/ml selenium, 36
ng/ml (10�7 M) hydrocortisone, 10�8 M triiodothyronine, 10
ng/ml EGF, and 50 ng/ml PGE1, as well as 100 U/ml penicil-
lin, and 100 �g/ml streptomycin, as described by Detrisac et
al. (10). Except for higher hydrocortisone concentrations and
the addition of EGF, the medium used is similar in compo-
sition to the K1 medium described by Taub et al. (34). The
cells were grown at 37°C in a humidified incubator in 5%
CO2-95% air. The culture medium was changed every 2–3
days until confluency was reached. The cells were propagated
by releasing them with 0.05% trypsin/0.53 mM EDTA and
were seeded on collagen I-coated culture dishes. Aliquots
were frozen and stored in liquid nitrogen. The cells could be
propagated for three passages, after which they became se-
nescent and stopped dividing. They were, therefore, trans-
formed and immortalized as described below.

Recombinant adeno-simian virus 40 viruses. Recombinant
adeno-simian virus (SV)40 viruses were used to transform
primary cultures of cyst-derived and control kidney epithelial
cells. These viruses contain an origin-defective (ori�) SV40
DNA cloned into the adenovirus vector in place of early
regions 1a and 1b (38). Due to the removal of early region 1,
the adenovirus vector has no transforming activity and thus
does not interfere with SV40-induced transformation (38).
This ori� chimeric adeno-SV40 virus results in much higher
efficiency of transformation compared with WT SV40 virus or
to ori� SV40 virus. Furthermore, because the SV40 portion
lacks the origin or replication, viral replication does not occur
within the cells (38). Two chimeric adeno-ori�-SV40 viruses
were used containing either the WT or TS A209 SV40 that
carries a point mutation at position 209 in the early region
(25, 38). They were obtained from Dr. Janice Chou, National
Institutes of Health. In this system, the chimeric virus at-
taches to the cell via the adenovirus receptor and allows
intracellular introduction of the SV40, followed by integra-
tion of the SV40 DNA into the cell genome (1). The adenovi-
rus acts as a vehicle and not as the transforming agent.
Because it lacks the early region 1, the adenovirus does not
replicate inside the cells (32, 38). The recombinant adeno-
SV40 viruses used in this study have been used previously to
transform and immortalize human fibroblasts and human
placental cells (25, 38).

Development of immortalized cells. The cells were seeded
on 100-mm collagen-coated culture dishes and grown in se-
rum-free hormone-supplemented medium until 50% conflu-
ent. They were transformed with recombinant ori� adeno-
SV40 viruses as detailed above. The viral supernatants were
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obtained from infected HEK293 cells and kept at �80°C until
use. Between 1.5 and 2.0 ml of viral supernatant (�108

plaque-forming units/ml) were used per plate. Both WT and
TS viruses were used. The cells were incubated with the
virus at 37°C for 60 min, and then the supernatant was
aspirated and replaced with fresh culture medium. Thereaf-
ter, the medium was changed every 2–3 days. The cells
infected with the WT virus were grown at 37°C, and those
infected with the TS virus were grown at 33°C. After viral
infection, the majority of the cells became dysmorphic, taking
on the appearance of “ghost” cells. A few distinct colonies of
normal-appearing cells remained, which became subconflu-
ent over a period of 5–6 wk. These surviving cells were
subcultured into additional collagen-coated plates and main-
tained in hormone-supplemented medium with 2% FBS until
passage 6. Thereafter, DMEM with 10% FBS was used. With
the use of this method, we did not observe any fibroblast
contamination.

In addition to cyst-derived cells, we immortalized normal
human renal cortical tubule epithelial cells (RCTEC) to be
used as the control for our cyst-derived cell lines. The cells

were purchased at passage 1 from Clonetics (Walkersville,
MD). They were immortalized using the same adeno-SV40
viruses and culture conditions used to immortalize the cyst-
derived cells. The culture medium used for RCTEC was
identical to that used for cyst-derived cells, except that it did
not contain EGF. Although the primary cultures of RCTEC
contained a mixture of �20% proximal and 80% distal tu-
bule-derived cells, continued culture with the above medium
resulted in the preferential growth of cells of distal tubule
origin as evidenced by Dolichos biflorus (DBA) lectin stain-
ing. These cells were further subcloned by limited dilution to
obtain pure populations of proximal and distal tubule cell
lines that were identified by their lectin-binding characteris-
tics. Accordingly, the distal tubule cell line has been named
RCTEC-DBA and the proximal tubule cell line named
RCTEC-Lotus tetragonolobus agglutinin (LTA).

Immunocytochemistry of cell monolayers. The WT cells
were seeded on collagen-coated coverslips and grown at 37°C
for 24 to 48 h before study. The TS cells were initially grown
at 33°C, then transferred to 37 or 39°C for 72 h before study.
For the majority of studies, the two-step immunofluorescence

Table 1. Major characteristics of ADPKD cyst-derived cell lines

Cell
Line

SV40
Type

Single or
Pooled

Sex of
Donor

Tubule
Origin

Highest
Passage EGF-R ENaC AGT Renin PKD1 PKD2

1-2 WT Pooled M NK 8 �(I) �(R) �(R) �(R)
3-2 WT Pooled M NK 15 �(R) �(R) �(R)
7-0 TS Pooled F NK 21 �(I) �(R) �(R) �(R) �(R) �(R)
9-1 WT Single F Distal 3 �(R) �(R) �(R) �(R) �(R)
9-2 WT Single F Distal 8 �(I) �(R) �(R) �(R) �(R)
9-3 WT Single F Distal 9 �(I) �(R) �(R) �(R) �(R)
9-7 TS, WT Single F Prox 42 �(I) �(I) �(I) �(I) �(I)
9-9 WT Single F Distal 14 �(I) �(I) �(I) �(I) �(I)
9-12-D WT Single F Distal 35 �(I,R) �(R)
9-12-L WT Single F Prox 36 �(I,R) �(R)
10-2 WT, TS Single F Distal 4
10-3 WT, TS Single F Distal 5
10-4 WT Single F Distal 5
10-7 WT, TS Single F Distal 20 �(I) �(R) �(R) �(I,R) �(I,R)
11-3 WT, TS Single F Distal 12 �(I) �(R) �(R) �(R)
11-6 WT, TS Single F Distal 13 �(I) �(R) �(R) �(I,R)
11-7 WT, TS Single F Distal 19 �(I)? �(R) �(R) �(I,R)
11-12 WT Single F Distal 18 �(I)
12-1 TS Single M Distal 8
13-1 TS Single M Distal 3
13-3* TS Pooled M Distal 7
14-2* WT, TS Pooled F NK 7 �(I)
13-6 TS Single M Distal 6
17-8 WT, TS Single F Distal 7
17-9 WT, TS Single F Distal 7
17-0* WT, TS Pooled F NK 3
18-3 TS Single M NK 5 �(I)
18-5 TS Single M NK 7 �(I)
19-1 TS Single M Distal 6
19-9 TS Single M Distal 9 �(I)
RCTEC WT N/A NK Prox 47 �(R) �(I) �(I) �(I)
RCTEC WT, TS N/A NK Distal 47 �(I) �(I) �(I) �(I)

The cells were obtained from cysts of 11 autosomal dominant polycystic kidney disease (ADPKD) kidneys. In the first column, the first
number denotes the kidney number and the second the cyst number. The second column identifies the type of simian virus (SV) 40 virus used
for transformation. WT, cells immortalized with wild-type adeno-SV40 virus; TS, cells immortalized with temperature-sensitive virus. For
example, cells numbered 10-2, 10-3, 10-4, and 10-7 were obtained from 4 individual cysts of kidney no. 10 and subsequently infected with
either WT or TS viruses. Cells were assigned proximal (Prox) or distal tubule origin if they bound FITC-labeled Dolichos biflorus or Lotus
tetragonolobus agglutinin lectin, respectively. Proximal tubule origin was further confirmed by immunocytochemistry, showing the presence
of aminopeptidase N (CD13) on cell membranes. EGF-R, epidermal growth factor receptor; ENaC, epithelial sodium channel; AGT,
angiotensinogen; I, demonstration by immunocytochemistry; R, demonstration by RT-PCR; RCTEC, renal cortical tubule epithelial cells; NK,
tubule origin not known. *Cell isolates obtained from deep portions of ADPKD kidneys. Cell lines 1-2, 3-2, and 7-0 were derived from a
mixture of cysts pooled and processed together. RCTEC cell lines were obtained from primary cultures of normal human renal cortical tubule
cells. WT RCTEC has been subcloned into proximal and distal tubule cell lines.
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method was used. The cells were washed three times with
PBS and then fixed for 15 min with 4% paraformaldehyde in
PBS, followed by three washes with PBS. The cells were
permeabilized for 5 min at room temperature with 0.5%
Triton X-100 in PBS, washed twice with PBS, and blocked
with 0.5% BSA in PBS for 20 min. After incubation with
primary antibodies for 1 h at room temperature, the cells
were washed three times with PBS followed by incubation
with FITC-labeled secondary antibodies (anti-mouse or anti-
rabbit IgG, used at 1:100 to 1:200 dilution) for 30 min in the
dark. The dilutions for the primary antibodies are indicated
in Reagents and supplies. For lectin-binding studies, FITC-
labeled LTA, Arachis hypogaea (PNA), or DBA lectins were
added directly to the cells at 1:50–1:100 dilution and incu-
bated for 30 min at room temperature. LTA is a marker of
proximal tubules, and PNA and DBA are markers of distal
and collecting tubules. The cells were washed with PBS and
mounted on slides, using FluoroGuard antifade mounting
solution (Bio-Rad, Hercules, CA). The slides were viewed
with a Zeiss Axioplan microscope equipped with epifluores-
cence and photographed using Kodak Elitechrome 400 film at
either 8- or 15-s exposure.

In some studies, immunocytochemistry was performed
with the ABC method, using a commercial kit (Vectastain
Elite kit, Vector Laboratories, Burlingame, CA). The cells
were washed three times with PBS and then blocked with
normal horse serum for 20 min at room temperature, fol-
lowed by the addition of the primary antibodies. The cells
were incubated overnight at 4°C and then washed three
times with PBS/0.1% Tween 20, followed by the addition of
the second (biotinylated) antibody and incubated for 30 min
at room temperature. The cells were washed three times with
PBS followed by the addition of one drop of the ABC reagent
and incubated at room temperature for 30 min. They were
washed three times with PBS, followed by the addition of
peroxidase substrate for 6–10 min, then rinsed in distilled
water, counterstained with hematoxylin, washed extensively

in running water, and mounted. The slides were viewed with
a Zeiss Axioplan microscope and photographed with Kodak
Ektachrome 64T film.

Electrical resistance measurements. The cells were grown
at high density on 0.45-�m pore size collagen I-coated trans-
lucent permeable filter inserts (Biocoat, Collaborative Biomed-
ical Products, Bedford, MA) and placed inside 12-well plates.
When confluency was reached, electrical resistance was mea-
sured across the filter, using a Voltohmeter (World Precision
Instruments, Sarasota, FL). The resistance across empty filters
was subtracted from the resistance across cell monolayers, and
the value obtained was corrected for the surface area of the
filter and expressed as ohms per centimeter squared.

Electron microscopy. The cells were grown on filters as
above and then fixed with 2.5% glutaraldehyde/1% parafor-
maldehyde in cacodylate buffer (pH 7.4). They were postfixed
with 1% osmium tetroxide in cacodylate buffer, dehydrated
with a graded series of alcohols, and embedded in epoxy
resin. Cross sections of the monolayers were cut with a
diamond knife. The thin sections were counterstained with
uranyl acetate and lead citrate. The specimens were observed
and photographed with a JEOL 100S transmission electron
microscope (JEOL, Tokyo, Japan).

RNA isolation and RT-PCR. The cells were grown to con-
fluence in 100-mm culture plates or 75-cm2 flasks, then
scraped, washed in PBS, and centrifuged. The cell pellet was
snap-frozen in dry-ice ethanol, and stored at �70°C until
used for RNA preparation. Total RNA was prepared, using
commercial kits (either RNeasy, Qiagen, Valencia, CA or
TRIzol Reagent, Invitrogen, Carlsbad, CA). mRNA for vari-
ous genes was detected by reverse transcription of the RNA
to obtain the complementary DNA (cDNA), followed by poly-
merase chain reaction (RT-PCR), using a Commercial kit
(Access RT-PCR, Promega, Madison, WI). Two different pairs
of oligonucleotide primers were designed, corresponding to
the 5�- and 3�-regions of the genes (Table 2). The primers
were designed to span one or more exon-intron junctions to
allow the distinction of products amplified from genomic
DNA. Parallel tubes were used in which the reverse tran-
scriptase was omitted (designated �RT), which were then
subjected to the same steps as those containing this enzyme
(designated �RT). PCR amplifications were performed for
30–35 cycles under fairly stringent conditions, using an MJ
Research PTC-200 Thermocycler. Each cycle consisted of
denaturation at 94°C for 30 s, annealing at 58°C for 1 min,
and extension at 72°C for 1 min. Each experiment was carried
out at least twice. In all experiments, one or more water blanks
were used to verify the lack of illegitimate amplification. RT-
PCR reactions were repeated in parallel with the same amount
of RNA, using primers for the �-actin gene, to check for the
quality of the reaction and to allow for evaluation of the amount
of RNA used in each reaction. In some experiments, GAPDH or
�-tubulin primers were used instead of �-actin. The reaction
products were size fractionated on 1.5% agarose gels with
ethidium bromide and photographed.

For detection of SV40 DNA integration into the cell ge-
nome, DNA was isolated, using a commercial kit (QIAmp
DNA mini kit, Qiagen). SV40 DNA was amplified by PCR,
using specific oligonucleotide primers (Table 2).

Gel electrophoresis and Western blotting. Cells grown on
collagen-coated 60- or 100-mm culture dishes were washed
twice with ice-cold PBS, scraped, and collected by centrifu-
gation. The pellet was homogenized in a small volume of lysis
buffer (50 mM NaCl, 50 mM Tris �HCl, pH 8.0, 0.2% NP-40,
0.5 mM PMSF) and incubated on ice for 60 min, followed by
two freeze-thaw cycles. After centrifugation at 10,000 g for 10

Fig. 1. Schematic diagram of isolation of epithelial cells from poly-
cystic kidneys. Several cyst tops were individually dissected with a
scalpel blade. Each cyst cutout was rinsed extensively in ice-cold
PBS and then placed in a separate tube containing 1� trypsin/
EDTA. The cysts were incubated for 20 min at 37°C and vortexed
vigorously every 5 min to allow separation of cells from the cyst wall.
The cyst walls stripped of cells were removed and the cells were
washed twice in Hanks’ buffered salt solution with 10% fetal bovine
serum. The final pellet was resuspended in serum-deficient hor-
mone-supplemented medium and seeded on Primaria culture plates.
The cells were transformed at passage 1 or 2 when 30–50% conflu-
ence was reached.
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min, the supernatant was transferred to new tubes and
frozen at �70°C.

SDS-PAGE was performed according to Laemmli (23).
After separation, protein bands were electrophoretically
transferred to polyvinylidene difluoride membranes (Immo-
bilon-P) according to Towbin et al. (37). Nonspecific sites
were blocked by incubating the membranes for at least 2 h at
room temperature in a blocking buffer consisting of Tris-
buffered saline, pH 7.4, 0.2% Tween 20 (TBS-T) and 3% BSA.
After two washes in TBS-T, a 1:500 to 1:1,000 dilution of the
primary antibody (in blocking buffer) was added to the mem-
branes, followed by incubation at room temperature for 2 h.
After three washes in TBS-T, the second antibody was added
(1:20,000 to 1:40,000 dilution of a horseradish peroxidase-
conjugated anti-mouse or anti-rabbit IgG), and the mem-
branes were incubated for 2 h at room temperature. After
four washes in TBS-T, the protein bands were visualized,
using the SuperSignal West Pico chemiluminescence detec-
tion method (BioRad Laboratories). Membranes were briefly
exposed to radiographic film for a permanent record.

Measurement of cAMP. Cells grown in 12-well collagen-
coated plates were transferred to serum-free DMEM for 15 h
before the experiments. They were preincubated for 1 h with
serum-free DMEM containing 0.5 mM 3-isobutyl-1 methylx-
anthine (IBMX), a phosphodiesterase inhibitor, followed by
the addition of parathyroid hormone (10�6 M) or AVP (10�6

M). In some experiments, forskolin (10�5 M) was used as a
positive control. After 10-min incubation at 37°C, the media
were aspirated and the cells were washed three times with
ice-cold PBS. Thereafter, 1 ml of a 100:1 mixture of ethanol/1
N HCl was added to each well and the cells were incubated
overnight at 4°C. After extraction, the ethanol was evapo-
rated and the extract was resuspended in 0.25 ml of ice-cold
Tris-buffered saline (pH 7.4) containing 4 mM EDTA and
frozen at �20°C until assayed. cAMP was measured by
radioimmunoassay, using a commercial kit (Biotrak, Amer-
sham, Arlington Heights, IL).

Each experiment was repeated at least two more times.
Where appropriate, statistical analysis was performed by

Table 2. Primers used in PCR amplification

Name Sequence Position Expected Size, bp

PKD1
Sense HPKDI673UP 5�--CCG GAT GAA GAT GAC ACC CT--3� Ex 37 254
Antisense HPKDI1357RP 5�--TCC TGC TTG ATG GCG CTT TG--3� Ex 38

PKD2
Sense HPKDII186UP 5�--CTA GCG TAT GCT CAG TTG GCA--3� Ex 8 257
Antisense HPKDII106RP 5�--GCT GTG CCA AGT CAG ATT TCA--3� Ex 10

ENaC
Sense HENAC 237-UP 5�--GGA CCT ACT TGA GCT GGG AG--3� Ex 2 239
Antisense HENAC 153-RP 5�--GAC CAG GGG TGT GTG GTT CC--3� Ex 3

ENaC
Sense HENAC 89-UP 5�--GAG AGA ATC CTG GCT CCT GAG--3� Ex 3 255
Antisense HENAC 47-RP 5�--GAA GTT CCG GAA GGT ACA CTG--3� Ex 4

CFTR
Sense HHCFTR333-UP 5�--CAC TCC TCA TGG GGC TAA TCT--3� Ex 6a 213
Antisense HCFTR 1656-RP 5�--CTT CTT CCC AGC AGT ATG CCT--3� Ex 6b

NHE3
Sense NHE3 981-UP 5�--AGG CCA ACA TCT CGG AGC AG--3� Ex 8 259
Antisense NHE3 1220 RP 5�--GAC AGG ACC ACC TGG TCA AT--3� Ex 10

AQP1
Sense AQP1-971-UP 5�--GCC AGA CCT GCA TGG TCA AG-3� Ex 4 250
Antisense AQP1-1201-RP 5�--GAA TCC CAG GCA CTT GCG CA--3� Ex 4

H�-ATPase-�1

Sense hHATP-UP 5�--TCC CTA TGC AGA GGC CTT CTC--3� Ex 9 232
Antisense hHATP-RP 5�--CGT AGA TCT GTC CCT CTG TGA AT-3� Ex 11

EGF-R
Sense EGFR-133-UP 5�--CTG CTT CTG CGC CGC CTT C--3� Ex 1 262
Antisense EGFR-377-RP 5�--GAC CGT GAG CGG CAG CTC--3� Ex 1

AGT
Sense hAGTEX4UP 5�--CAT TCT GCA CAC CGA GCT GA--3� Ex 4 258
Antisense hAGTEX5RP 5�--ATG CTG TGC TCA GCG GGT TG--3� Ex 5

Renin
Sense hREN181-UP 5�--GAG TGG AGC CAA CCC ATG AAG--3� Ex 2 217
Antisense hREN256-RP 5�--GAG CTT GTG ATA CAC ACA GGC A-3� Ex 3–4

SV40
Sense SV40-F 5�--GGG ACT TTC CAC ACC CTA AC--3� 421
Antisense SV40-R 5�--CCA GCA GCA ATT TCA GCT ACT--3�

�1-Tubulin
Sense hTUBA1-F 5�--CCT CAA CGA CCA CTT TGT CA--3� Ex 1 111
Antisense hTUBA1-R 5�--CCG TGT TCC AGG CAG TAG A--3� Ex 2

GAPDH
Sense hGAPDH-F 5�--CCT CAA CGA CCA CTT TGT CA--3� Ex 7 102
Antisense hGAPDH-R 5�--TTA CTC CTT GGA GGC CAT GT--3� Ex 8

�-Actin
Sense ACTINUP105 5�--GTG GGC CGC TCT AGG CAC CA--3� Ex 1 242
Antisense ACTINRP344 5�--CGG GTT GGC CTT AGG GTT CAG--3� Ex 1

CFTR, cystic fibrosis transmembrane conductance regulator; NHE3, Na�-H� exchanger 3; AQP1, aquaporin-1; Ex, exon.
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Student’s t-test for group comparisons. A P value of �0.05
was considered significant.

Reagents and supplies. Tissue culture media and FBS were
purchased from GIBCO Invitrogen (Carlsbad, CA). Rat tail
collagen I (no. 354236) was purchased from Becton Dickinson
(Bedford, MA). Monoclonal antibody against pan-cytokeratin
was purchased from Sigma (St. Louis, MO) and used at 1:100
dilution for immunofluorescence studies and at 1:250 dilu-
tion with the ABC method. Monoclonal antibody against
vimentin was purchased from Boehringer/Roche (Indianapo-
lis, IN) and used at 1:100 dilution for immunofluorescence
studies and at 1:250 dilution with the ABC method. Mono-
clonal antibodies against aminopeptidase N (CD13) and the
SV40 large T antigen were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA) and used at 1:250 and 1:100
dilution, respectively. The rabbit polyclonal antibody against
the extracellular region of polycystin-1 (mr-3) and rabbit
polyclonal antibody against polycystin-2 were prepared in
Dr. Jing Zhou’s laboratory and have been previously de-
scribed (14). Both were used at 1:250 dilution. FITC-labeled
secondary antibodies were purchased from Pierce (Rockford,
IL). FITC-labeled LTA, PNA, and DBA lectins were pur-
chased from Sigma and used at 1:50 to 1:100 dilution. RNA
and DNA isolation kits were purchased from Qiagen. RT-
PCR kit (Access RT-PCR) was purchased from Promega.
Oligonucleotide primers were synthesized by GIBCO Invitro-
gen. Other reagents of highest purity grades were purchased
from Sigma, Fisher, or other commercial suppliers.

RESULTS

Characteristics of ADPKD cells. The majority of the
cells were transformed at the second passage after the
initial seeding. After infection with the recombinant
adeno-SV40 viruses, the cells divided rather slowly
with continued presence of large ghost cells that were
gradually replaced by healthy appearing cells over 5–8
wk. The surviving cells were maintained in a hormone-
supplemented medium containing 2% FBS to inhibit
fibroblast growth. After passage 6, the medium was
changed to DMEM with 10% FBS. The cells have been
maintained in this medium for 8–42 passages. From 30
cyst-derived cell isolates, we obtained a total of 41
transformed cell lines, 21 of which were transformed
with WT SV40 viruses and 20 with TS SV40 viruses.
Among these, 11 cell lines were successfully trans-
formed with both WT and TS viruses. Additionally,
SV40-transformed control proximal and distal renal
tubule epithelial cells were obtained from a normal
human renal cortical epithelial cell isolate (Table 1).

The cells immortalized with the WT virus (WT se-
ries) are continuously grown at 37°C. Those immortal-
ized with the TS virus (TS series) are maintained at
33°C. To induce expression of a normal phenotype, the
TS cells are transferred to 39 or 37°C for 72 h before
the experiments. The TS cells remain viable for at least
7 days after transfer to the nonpermissive temperature
(not shown).

When seeded on either uncoated or on collagen I-
coated culture dishes, the cells grow as monolayers
with contact inhibition, as evidenced by the observa-
tion of a plateau on growth curves. Their morphology
varies from a polygonal or cobblestone appearance typ-
ical of epithelial cells to elongated or fusiform shapes

and swirls (Fig. 2). In one cell isolate (14-2), we ob-
served dome formation at the initial seeding but domes
were not seen in cultures of immortalized cells (Fig.
2B). To determine the growth characteristics of the
cells, representative samples from both WT and TS
cyst-derived cells were seeded in 12-well multiwell
plates at a density of 20,000 cells/well. Beginning on
the third day after seeding, the cells in duplicate wells
were trypsinized every 24 h and counted with a hemo-
cytometer. The WT cells were maintained at 37°C for
the duration of the study. The TS cells were seeded on
two different 12-well plates and initially grown at
33°C. Seventy-two hours after seeding, one plate was
switched to 37°C and daily cell counts were continued
from duplicate wells of each plate. The WT cells and TS
cells grown at 37 and 33°C, respectively, showed typi-
cal “S”-shaped growth curves with faster growth rate
for WT cells (Fig. 3, A and B). The doubling times
estimated from the linear portion of the exponential
phase of growth curves were �33 h for WT 9-7 cells
grown at 37°C and �48 h for TS 9-7 cells grown at
33°C. We also calculated the “growth rate” of the same
cells using log-linear transformation of the growth data
(Fig. 3, C and D). With the use of the values from
log-linear transformations, the doubling times were
�38 h for WT 9-7 cells and �64 h for TS 9-7 cells. In TS
cells, cell division and growth rate slowed and ceased
�96 h after transfer to 39°C, coinciding with the dis-
appearance of the large T antigen on Western blots. In
general, growth rates were more a function of the
growth temperature necessitated by the immortalizing
SV40 virus used (faster for WT cells than for TS cells)
than of the kidney or cyst from which the cells origi-
nated.

Previous studies showed increased life span and bet-
ter differentiation when renal epithelial cells are
grown on collagen or other extracellular matrix com-
ponents (10, 26). We therefore used collagen I-coated
plates and dishes for all subsequent experiments. Re-
gardless of culture conditions (presence or absence of
serum) and the type of substratum, the nontrans-
formed cyst-derived cells could not be maintained in
culture beyond three passages.

With the use of immunocytochemistry with a pan-
cytokeratin antibody, we demonstrated the expression
of cytokeratin by all the immortalized cells studied,
confirming their epithelial origin (Fig. 4, A and C). The
cells also express vimentin, a component of cells of
mesenchymal origin (Fig. 4, B and D). The significance
of this finding is not clear, but it may be related to the
undifferentiated nature of these cells (42). Other epi-
thelial cells such as podocytes have also been shown to
express vimentin (44).

Characterization of tubule origin of the cysts and
cells. To determine the tubule origin of the cyst-derived
cells, we used lectins that bind specifically to sugar
moieties in proximal and distal tubules as well as
antibodies to tubule-specific proteins. We used LTA
and aminopeptidase N (CD13) as proximal tubule
markers and DBA or PNA as distal tubule markers
(18). Twenty-one of 30 transformed cell isolates corre-
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sponding to a total of 29 WT and TS cell lines bound
DBA or PNA lectins, suggesting distal tubule origin of
the cysts (Table 1). Two transformed cell isolates cor-
responding to three WT and TS cell lines (WT 9-7, TS
9-7, and WT 9-12) bound LTA lectin or showed positive
staining with CD13 antibody, suggesting proximal tu-
bule origin of the cyst (Table 1 and Fig. 5). Five cell
isolates (1-2, 3-2, 7-0, 13-3, 14-2, and 17-0) represent
mixtures of DBA- and LTA-positive cells and two iso-
lates (18-3 and 18-5) derived from single cysts could not
be classified due to conflicting lectin-binding results.
These two cell lines express angiotensinogen, a feature
of proximal tubules (Table 1). Lectin-binding charac-
teristics did not change in those cells that were studied

as primary cultures before immortalization and again
after they were immortalized (Fig. 5, G and H). On the
basis of these criteria, we have been successful in
isolating cyst-derived cells representing cysts of both
proximal and distal tubule origin.

We also measured the transepithelial electrical re-
sistance across cells grown on collagen-coated perme-
able filter inserts. In four cell isolates (9-5, 9-6, 10-7,
11-6) in primary culture, the mean transepithelial elec-
trical resistance measured in duplicate filters was
128 	 7 
/cm2 (n � 4), which is comparable to the
electrical resistance measured in leaky epithelia such
as proximal tubules. Other cell isolates had signifi-
cantly higher electrical resistances [2,204.3; 1,027.5;

Fig. 2. Phase-contrast microscopy of
immortalized cyst-derived cells. A and
B: confluent monolayers of cyst-de-
rived cells (14-4 and 14-2) in primary
culture. B: note dome formation. C:
confluent monolayer of an immortal-
ized temperature-sensitive (TS) cell
line (TS 9-7) derived from a cyst of
proximal origin; D: cell line (TS 11-7)
derived from a cyst of distal origin,
both grown at 33°C. E: confluent mono-
layer of an immortalized wild-type
(WT) cell line (WT 9-7) from a cyst of
proximal origin; F: WT cell line (WT
10-7) derived from a cyst of distal ori-
gin. G: confluent monolayer of control
human renal distal tubule epithelial
cell line (WT RCTEC). H: recently
transformed cyst-derived cells with
multiple “ghost” cells. All cells were
grown on collagen I-coated culture
plates. Magnification �100.
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Fig. 3. Growth curves of WT and TS
immortalized cyst-derived cells. A:
growth curve of a representative WT
cell line (WT 9-7) at 37°C, showing a
typical S-shaped curve with an initial
lag time followed by exponential
growth, then slower growth, as the
cells become confluent. B: growth curve
of a representative TS cell line (TS 9-7)
under permissive and nonpermissive
conditions. Cells were grown at 33°C,
and then one-half were transferred to
37°C (arrow) and the other one-half
were kept at 33°C. The TS cells con-
tinue to divide when maintained at
33°C. In TS cells transferred to 37°C,
cell growth slows 48–72 h, following
transfer to the nonpermissive temper-
ature. The cells cease to grow and die
when left 7 days or more at this tem-
perature. C and D: same data as in A
and B plotted on a log scale. The slopes
of the lines correspond to growth rates
of the cells.

Fig. 4. Expression of cytokeratin and vimentin in cyst-derived cells. The cells were seeded on collagen I-coated
coverslips and used for immunocytochemistry using either the ABC method (A–C) or FITC-labeled second antibody
(D and E). Strong cytokeratin staining (A and D) confirms epithelial origin of the cells. The cells also express
vimentin (B and E), consistent with loss of differentiation. C: cells incubated with preimmune IgG show no
staining. The results are representative of 3 experiments in different cells.
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and 577.5 
/cm2 for 10-2, 11-6, and 14-2, respectively
(mean 1,270 	 485, n � 3)]. After transformation, we
were unable to show a significant difference in electri-
cal resistance between the two cell types. For example,
cell isolate 11–6 had electrical resistances of 1,645 and
2,764 
/cm2 on 2 consecutive days when in primary
culture, which decreased to 89 and 134 
/cm2 (dupli-
cate measures), when the measurements were re-
peated in transformed WT 11-6 cells. However, many
other characteristic features of proximal and distal
tubules could be identified in the immortalized ADPKD
cell lines.

Electron microscopy. Electron microscopy was per-
formed using cells grown on collagen I-coated filter

inserts. The WT cells were grown at 37°C until conflu-
ency was reached. The TS cells were grown at 33°C.
When confluent, they were transferred to 37°C for 72 to
96 h before being processed for electron microscopy.
The cells had large nuclei and appeared as polarized
epithelial cells with the apical side facing the medium
and the basolateral side facing the filter. We did not
observe apical microvilli in these limited studies. Both
cyst-derived cells in primary culture and the TS cells,
studied after transfer to the nonpermissive tempera-
ture of 37°C, showed relatively well-developed junc-
tional complexes (Fig. 6). As reported in other immor-
talized cells (24), multilayering could be observed when
the cells were grown under suboptimal conditions.

Fig. 5. Demonstration of tubule origin of cyst-derived cells. The cells were grown on collagen I-coated coverslips
and either incubated with FITC-labeled D. biflorus (DBA), Arachis hypogaea (PNA), or L. tetragonolobus agglutinin
(LTA) lectin or with an antibody to aminopeptidase N (CD13), followed by incubation with a FITC-labeled second
antibody. A: cyst-derived cells of proximal tubule origin (WT 9-7) showing positive staining for CD13. B:
cyst-derived cells of distal tubule origin (WT 10-7), showing positive staining with DBA lectin. C: WT 9-7 cells
incubated with preimmune IgG as primary antibody (control for A). D–F: control human renal cortical epithelial
cells (WT RCTEC) of distal tubule origin, showing negative staining with CD13 (D) and positive staining with DBA
lectin (E). Same cells incubated with preimmune IgG as primary antibody (control for D). G: cyst-derived cells in
primary culture showing positive staining with PNA lectin. H: cyst-derived cells in primary culture showing
positive staining with LTA lectin.
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Hormonal responses. The generation of cAMP in re-
sponse to hormones such as PTH and AVP has been
used to ascertain the tubule origin of cultured renal
cortical cells (26). Previous studies in cyst-derived cells
in primary culture of unknown tubule origin showed
reduced cAMP generation in response to PTH and AVP
(43). With the use of immortalized cyst-derived cells
with defined tubule origin, we investigated the effect of
PTH and AVP on intracellular cAMP generation. As
expected, there was a significant increase in intracel-
lular cAMP, following exposure to forskolin (10�5 M) in
all the cells tested (Fig. 7). In four experiments con-
ducted in triplicate, we showed no change in intracel-
lular cAMP generation in response to AVP in a cell line
(WT 10-7) derived from a cyst of distal tubule origin. In
contrast, we observed a significant increase in intra-
cellular cAMP in response to PTH in a cell line (WT
9-7) derived from a cyst of proximal tubule origin (P �
0.005, n � 4). Interestingly, there was also a significant
increase in cAMP in response to AVP in this cyst cell
line of proximal tubule origin (P � 0.05, n � 4). We
observed increased intracellular cAMP (from 1.19 	
0.03 to 2.47 	 0.70 pmol/well, n � 3) in response to
AVP in the distal tubule control human kidney cell line
(WT RCTEC). However, the increase was significant
only at P � 0.051, perhaps due to intra-assay variabil-
ity (Fig. 7). On the basis of these experiments, we
conclude that there is a blunted response to AVP in
cyst-derived cells of distal tubule origin, whereas the
response of cyst-derived cells of proximal tubule origin
to PTH remains intact.

Expression of polycystin-1 and polycystin-2. We used
both RT-PCR and immunocytochemistry to determine

the distribution of PKD1 and PKD2 mRNA and poly-
cystin proteins from several cyst-derived cell lines. By
semiquantitative RT-PCR, we showed the presence of
mRNA for PKD1 and PKD2 in all cells examined (Fig.
8). Furthermore, both PKD1 and PKD2 band intensi-
ties appeared to be higher in cells grown on collagen I,
compared with cells grown on plastic. With the use of
polyclonal antibodies against polycystin-1 and polycys-
tin-2, we showed the presence of both proteins in all
the cells examined. Both polycystin-1 and polycystin-2
showed a diffuse intracytoplasmic staining pattern,
regardless of the degree of confluence of the cell mono-
layer (Fig. 9). We also detected moderate staining for
both polycystin-1 and -2 in the control RCTEC cell lines
(Fig. 9 and Table 1), indicating that the antibodies
cannot distinguish between intact and mutated poly-
cystins.

Expression of tubule-specific channels and proteins.
In addition to polycystins, the immortalized cells ex-
press a variety of other markers typically associated
with renal tubules. We studied the expression of
mRNA for the genes of interest in selected cyst-derived
cells as well as in human RCTEC using RT-PCR. They
included the mRNA for cystic fibrosis transmembrane
conductance regulator (CFTR), epithelial Na� channel
(ENaC), Na�-H� exchanger (NHE3), aquaporin-1
(AQP1), and H�-ATPase (Figs. 10 and 11). The epider-
mal growth factor receptor (EGF-R) was demonstrated
both by RT-PCR and immunocytochemistry and was
expressed by cyst-derived cells, of both proximal and
distal tubule origin (Table 1). NHE3 was weakly ex-
pressed in cyst-derived cells, but strong NHE3 bands
were seen in RCTEC lines. AQP1 was expressed in

Fig. 6. Transmission electron micro-
graphs of immortalized cyst-derived
cells. The cells were grown on collagen
I-coated permeable filters and pro-
cessed for electron microscopy. The TS
cells were grown initially at 33°C and
then switched to 37°C for 96 h before
processing. A: section from a cyst-de-
rived cell in primary culture showing
polarized appearance and a well-devel-
oped tight junction (arrows; magnifica-
tion �19,800 before reduction). B and
C: TS cells studied 96 h after transfer
to 37°C. B: two TS cells showing the
presence of tight junctions between
them (arrows). C: another area from
the same filter, showing junctional
complex between 2 cells (arrowhead).
Magnification for B and C: �15,000.

F406 CELL LINES FROM ADPKD KIDNEY

AJP-Renal Physiol • VOL 285 • SEPTEMBER 2003 • www.ajprenal.org



cyst-derived cells of both proximal and distal tubule
characteristics as well as in RCTEC lines. H�-ATPase
was weakly expressed by cyst-derived cells of distal
origin, but a strong band was seen in distal RCTEC. On
the basis of these limited experiments, we conclude
that the immortalized cyst-derived cells maintain
many features of their tubule of origin. Interestingly,
we showed that cyst-derived cells of distal tubule origin
express renin, whereas the cyst-derived cells of proxi-

mal tubule origin express angiotensinogen (43). Both
cell types express angiotensin-converting enzyme and
ANG I receptors (AT1 subtype) (unpublished observa-
tions).

Immortalized cyst-derived cells express the SV40
large T antigen. Because all the cyst-derived cell lines
and the control human renal cortical cell line were
immortalized with adeno-SV40 recombinant viral con-
structs, we verified the expression of SV40 large T
antigen in these cells. We initially used immunocyto-
chemistry with a monoclonal antibody against the
large T antigen of SV40. Strong immunostaining was
observed within the nucleus of all the cells studied
(both ADPKD and RCTEC). In TS cells grown at the
permissive temperature of 33°C, the intensity of the
large T antigen staining was similar to that found in
WT cells grown at 37°C. When the TS cells were
switched to the nonpermissive temperature of 39°C,
the large T antigen staining was markedly reduced at
72 h (Fig. 12). In additional experiments, we tested for
the presence of the SV40 large T antigen by Western
blot analysis of cell lysates obtained from representa-
tive cyst-derived cells. The large T antigen was seen as
a 94-kDa band in WT cells grown at 37°C and in TS
cells grown at 33°C. There was a gradual decrease in
the intensity of the large T antigen band in TS cells
switched to 39°C, which completely disappeared after
72 h (Fig. 13).

Demonstration of SV40 DNA incorporation into the
cellular genome. Previous studies showed that human
cells are relatively resistant to immortalization with
SV40 oncogenes, whereas rodent cells can be easily
transformed and immortalized (17). The (ori�) chi-
meric adeno-SV40 viruses such as the ones used in this
study result in much higher efficiency of transforma-
tion compared with WT SV40 virus or with (ori�) SV40

Fig. 7. cAMP generation by immortalized cyst-derived cells. The
cells were incubated with forskolin (Forsk; 10�5 M), AVP (10�6 M), or
parathyroid hormone (PTH; 1-34) (10�6 M) in the presence of 0.5 mM
3-isobutyl-1 methylxanthine. Intracellular cAMP generated was
measured by radioimmunoassay. Forskolin results in marked in-
crease in cAMP in all the cell lines. A: cyst-derived cells of proximal
tubule origin (WT 9-9) show increase in intracellular cAMP in re-
sponse to both AVP and PTH. B: cyst-derived cells of distal tubule
origin (WT 10-7) fail to respond to AVP. WT RCTEC shows moderate
increase in cAMP in response to AVP. The results are means 	 SE of
3–4 experiments, each conducted in triplicate. A: significance at *P �
0.005. B: for WT 10-7, the difference between AVP or PTH and
control was not significant. C: for WT RCTEC, the difference between
AVP and control did not reach statistical significance (P � 0.051).

Fig. 8. Demonstration of mRNA for PKD1 and PKD2 in immortal-
ized cyst-derived cells. Cyst-derived cells (WT 1-2) were grown on
either noncoated or on collagen I-coated culture dishes, followed by
RNA isolation. RT-PCR was performed, using specific primers for
human PKD1 and PKD2 genes. Strong PKD1 and PKD2 mRNA
bands are seen when the cells are grown on collagen. Weaker PKD1
and PKD2 mRNA bands are seen when the cells are grown on
uncoated plastic. Note that these cells also express renin mRNA,
which is not normally expressed in renal tubules.
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virus (25, 38). This was the reason for using the chi-
meric viruses instead of simple (ori�) SV40.

To ascertain that the cell lines have been success-
fully transformed, we studied the incorporation of
SV40 DNA into the cyst-derived cellular DNA using
PCR amplification. Because the TS SV40 virus used
(TS A209) differs from the WT by a point mutation, the
same PCR primers were used to amplify the genomic
DNA obtained from both WT and TS cells. The results

show the presence of a strong band for SV40 DNA in all
cells tested, including the control RCTEC and cyst-
derived cell lines (Fig. 14).

DISCUSSION

In ADPKD, cysts develop as a result of “second hit”
somatic mutations in the normal or WT allele of the
PKD1 or PKD2 gene, resulting in inactivation of the

Fig. 9. Polycystin expression by im-
mortalized cyst-derived and control hu-
man kidney cells. The cells were seeded
on collagen I-coated coverslips and
used for immunocytochemistry. Cells
from a cyst of proximal tubule origin
(WT 9-7) showing diffuse staining for
polycystin-1 (A) and polycystin-2 (B).
Cells from a cyst of distal tubule origin
(WT 10-7) showing diffuse staining for
polycysin-1 (C) and polycystin-2 (D).
WT RCTEC cells showing staining for
polycystin-1 (E) and for polycystin-2
(F). G: WT RCTEC cells stained with
preimmune IgG showing background
staining. A-G: magnification �200.
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gene and production of a nonfunctional protein (22, 36).
A variety of mutations has been described in PKD1 and
PKD2 families (30, 41). Because the cells described
here were isolated from individual cysts, each cell line
is likely to have a different somatic mutation resulting
in a unique genotype. Therefore, these cell lines will be
very useful for studies of the genotype-phenotype rela-
tionship, including studies aimed at rescuing the de-
fective gene mutation by overexpressing the WT PKD1
or PKD2 genes. Studies are planned to obtain genotype
analysis of all the cell lines described.

Primary cultures of cyst-derived cells have been used
by a number of investigators (28, 29, 43). The cells
grow well initially and can be passaged up to three
times. However, most experiments must be conducted
by the second passage, as the growth slows signifi-
cantly afterward. Accordingly, the cells must be ob-
tained from cysts of freshly harvested polycystic kid-
neys, which considerably limits the availability of such
cells. Using cyst-derived cells obtained from different
kidneys with presumably different PKD mutations in-
troduces significant experimental variability. The iso-
lation of cells obtained from single cysts results in a
high likelihood that each cell isolate has a defined
tubule of origin (proximal or distal).

We describe the development and characterization of
a series of immortalized cell lines derived from individ-
ual cysts of ADPKD kidneys and control cell lines from
normal human kidney cortex. About half of the cell
lines are conditionally immortalized with a TS SV40
virus and the rest immortalized with WT SV40 virus
(Table 1). These immortalized cyst-derived cells offer
several advantages. 1) They can be maintained in cul-
ture and used for long periods of time, thus eliminating
the experimental variability associated with the use of
cells derived from different ADPKD kidneys. 2) They
obviate the need for scarce fresh human ADPKD kid-
neys for cell isolation. 3) They allow experiments to be
planned ahead of time and to be performed in a con-
trolled manner at the investigator’s convenience.
4) Identical cell lines can be distributed among many

Fig. 10. Demonstration of mRNA for cystic fibrosis transmembrane
conductance regulator (CFTR) and epithelial Na� channel (ENaC;
�-subunit) in immortalized cyst-derived cells. RT-PCR was per-
formed using RNA isolated from several cells derived from single
cysts of distal tubule origin. Autosomal dominant polycystic kidney
disease (ADPKD)-2 and -3 cells were obtained from cystic tissue
dissected from deep portions of ADPKD kidneys. Human kidney
RNA was used as positive control. Strong mRNA bands are seen in
all the cells tested (arrows).

Fig. 11. Demonstration of mRNA for renal tubule-as-
sociated channels and proteins. Agarose gel of RT-PCR-
amplified products corresponding to Na�-H� exchanger
(NHE3), aquaporin-1 (AQP1), epidermal growth factor
receptor (EGF-R), and H�-ATPase �1-subunit. GAPDH
and �-tubulin are used as positive controls. WT 9-12
LTA and WT 9-12 DBA were subcloned from a cyst-
derived cell line, based on lectin-binding characteris-
tics. WT 9-2 LTA has proximal tubule characteristics
and WT 9-12 DBA has distal tubule characteristics.
Similarly, WT RCTEC cells were subcloned into proxi-
mal tubule (RCTEC LTA) and distal tubule (RCTEC
DBA) cell lines. Weak NHE3 bands are seen in both
cyst-derived cells, whereas AQP1 is present in all cells.
EGF-R band intensity is stronger in cells of proximal
tubule origin. Conversely, H�-ATPase mRNA band is
seen primarily in distal RCTEC and weakly in distal
cyst-derived cells. MW, molecular weight.
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investigators, allowing comparison of the data between
different laboratories and establishment of collabora-
tive studies. 5) They facilitate detailed studies of the
genotype-phenotype relationship by allowing compari-
sons between cells derived from different cysts of the
same kidney or cells derived from cysts of different
kidneys. 6) Immortalized cells can be stably trans-
fected with expression vectors, using antibiotic selec-
tion, to obtain continued expression of a variety of
genes and proteins. Such studies have, until now, been
possible only in non-ADPKD cell lines such as Madin-
Darby canine kidney cells. The availability of control
human kidney cell lines immortalized with the same
SV40 viruses further increases the value of these cyst-
derived cell lines as experimental models of ADPKD.

The cell lines were derived from individual cysts of
11 ADPKD kidneys by infecting the primary cyst-de-
rived cell cultures with both WT and TS adeno-SV40
recombinant viruses. Thirty cyst-derived cells in pri-
mary culture were used, of which 10 were immortal-
ized with WT SV40 virus, 9 were immortalized with TS

SV40 virus, and 11 were immortalized with both WT
and TS viruses (Table 1).

SV40 has been used successfully to transform a va-
riety of cells and prolong their life span (9). Small et al.
(33) showed that the frequency of transformation can
be enhanced with the use of SV40 ori� mutants. Hu-
man cells are semipermissive for SV40 viruses, and
viral replication occurs in �1–2% of the cells (38). A
portion of the cell population can become transformed
and integrate the viral DNA into the cell genome (38).
However, successful transformation and subsequent
immortalization occur rarely even when ori� SV40
viruses are used (25). To overcome these limitations,
chimeric adenovirus-ori�-SV40 recombinants have
been developed (38). They contain an ori� SV40 DNA
cloned into the adenovirus vector in place of early

Fig. 12. Detection of simian virus (SV)40 large T antigen in immortalized cyst-derived cells. The cells were seeded
on collagen-coated coverslips and used for immunocytochemistry with an antibody to the large T antigen of SV40.
The WT cells (WT 9-7) were studied at 37°C. The TS cells (TS 11-7) were studied both at 33°C and after transfer
to 39°C for 72 h. Strong large T antigen immunostaining is localized to the nuclei of cells in both WT and TS cells.
The T antigen staining intensity is significantly reduced in TS cells kept at 39°C for 72 h. C: apparent persistence
of immunofluorescence signal is due to computer enhancement. All pictures were taken at 8-s exposure.

Fig. 13. Detection of SV40 large T antigen in immortalized cyst-
derived cells. The cells were grown either at 37°C (WT 9-9 cells) or at
33°C (TS 9–7 cells) and then transferred to 39°C for different times
before collection. Cell culture media were collected at times indicated
and used for SDS-PAGE, followed by Western blotting. The large T
antigen is seen as a band of 94-kDa molecular mass. Clone 5 is a
murine collecting duct cell line derived from a transgenic mouse
(tsA58) harboring the SV40 large T antigen gene. The T antigen
band is seen in WT cells at 37°C and in TS cells at 33°C. It completely
disappears 72 h after transfer of the TS 9-7 cells to 39°C.

Fig. 14. Demonstration of integration of SV40 DNA into cell genome.
Agarose gel of PCR products obtained from genomic DNA isolated
from 2 immortalized cyst-derived cell lines of proximal (WT 9-12
LTA) and distal (WT 9-12 DBA) tubule origin as well as from 2
immortalized control human renal proximal and distal tubule cell
lines (RCTEC LTA and RCTEC DBA) is shown. SV40 DNA is seen as
a 421-bp band in all the cells studied, confirming the integration of
viral DNA into the cell genome.
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regions 1a and 1b. In previous studies, no transcripts of
adenovirus early regions were detected in cells trans-
formed by hybrid adeno-SV40 viruses (32). Therefore,
the adenovirus acts as a vehicle and not as the trans-
forming agent. Because it lacks the early region 1, the
adenovirus does not replicate inside the cells (32, 38).

Successful transformation of cyst-derived cell lines
was confirmed by observing continued cell division
beyond the third passage and, more specifically, by
demonstrating the presence of the SV40 large T anti-
gen protein within the nucleus of the cells and the
integration of SV40 DNA within the host cell DNA.
Because of the unique structure of the recombinant
adeno-SV40 viral construct used, the amplified SV40
DNA most likely represents chromosomal DNA and
not free DNA (38). We further showed that the TS form
of the large T antigen undergoes degradation and dis-
appears in cells grown for at least 72 h at the nonper-
missive temperature of 39°C. Large T antigen degra-
dation was also observed at the more convenient tem-
perature of 37°C. The loss of the T antigen has been
generally associated with a more differentiated pheno-
type (9, 26). Differentiation may also be improved by
growing the cells on collagen-coated plates, instead of
plastic. For example, we showed that renin mRNA
expression is higher in cyst-derived cells grown on
collagen compared with those grown on plastic (unpub-
lished observations). The expression of PKD1 and
PKD2 mRNA is also increased in cyst cells grown on
collagen-coated plates (Fig. 8).

In some experiments, the expression of SV40 large T
antigen may be used to an advantage. Because the T/t
common exon of SV40 can functionally replace the J
domain of molecular chaperones, continued expression
of the SV40 large T may facilitate membrane translo-
cation of channel proteins such as polycystins (21, 39).
Pairs of cyst-derived cells, transformed with both WT
and TS SV40 viruses, offer the ability to test the effect
of large T antigen on intracellular localization of poly-
cystin-1 and polycystin-2.

Although we observed high transepithelial electrical
resistance across some cyst-derived cells in primary
culture, lower electrical resistances were recorded af-
ter the cells had been immortalized. The reason trans-
epithelial electrical resistance declines is not clear but
may be related to reduced differentiation after immor-
talization or the possibility that the cell could be of
proximal tubule origin. Among the cell lines, only a few
TS cells were tested. Therefore, additional studies are
needed to test all the cells under conditions that would
induce maximum differentiation (nonpermissive tem-
perature, appropriate substratum). It is possible that
under optimal conditions, the immortalized cyst-de-
rived cells of distal origin might develop higher trans-
epithelial electrical resistance close to values seen in
cells in primary culture.

The immortalized cyst-derived cells maintain the
expression of some channels and proteins present on
renal tubular epithelial cells. These include proximal
tubule markers such as angiotensinogen (37), AQP1
(11) or NHE3 (5), and distal tubule and collecting duct

markers such as ENaC (24) and CFTR (20). The cyst-
derived cells also maintain the expression of the
EGF-R. Although the expression of channels in cyst-
derived cells generally followed the pattern expected
based on tubule origin, AQP1 and NHE3 were ex-
pressed in cyst-derived cells of both proximal and dis-
tal tubule origin. Additional studies are required to
clarify this apparent discrepancy with previous reports
(11). Of particular interest is the expression of renin
and all the other components of the renin-angiotensin
system by many cyst-derived cell lines (unpublished
observations). Currently, there are no human kidney
cell lines that express renin, making these cell lines
useful for studies of renin regulation.

In summary, we developed two series of immortal-
ized cell lines from cyst epithelium of individual cysts
of 11 human ADPKD as well as immortalized control
cell lines from normal human renal cortex. One line of
cells was immortalized with a WT adeno-SV40 virus,
resulting in continued expression of the SV40 large T
antigen. Another line of cells was immortalized with a
TS adeno-SV40 virus, in which the large T antigen can
be turned off when the cells are transferred to a non-
permissive temperature, resulting in a more differen-
tiated phenotype. These new cell lines should facilitate
studies of the mechanism of cyst formation including
cell proliferation, cell-cell or cell-matrix interaction,
signal transduction, and genotype-phenotype correla-
tion.
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